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Abstract: The main goal in this paper is to continue the investigations of the important system (see [4]), by 

considering a delayed multi-team prey-predator model. In the absence of delay, we study the conditions of the 
existence and stability properties of the equilibrium points. For the full general model with delay, conditions are 
derived under which there can be no change in stability. Using the discrete time delay as a bifurcation parameter it is 
found that Hopf bifurcation occurs when the delay passes through a critical value. Results are verified by computer 
simulation. 
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1  Introduction 

In the natural world, however, species does not exist alone. Also, it competes with the other species for 

space, food or predated by other species. Therefore, it is more biological significance to consider the effect 
of interacting species when we study the dynamical behaviors of biological models. Delay-differential 

equations exhibit much more complicated dynamics than ordinary differential equations since a time delay 

could cause a stable equilibrium to become unstable and cause the populations to fluctuate. Time delays 
have been incorporated into biological models by many authors (for example, [2], [3], [5], [7], [8], [9], 

[12]). In recent years, a delayed prey-predator system is one of the most important  fields of interest (see 

[1], [6], [10], [11] [13]). 

In this paper, we formulate a multi-team prey-predator model with time delay 0  denote the gestation 

of the predator. The results show that if the gestation delay is small enough, their sizes will keep stable in 
the long run, but if the gestation delay of predator is large enough, their sizes will periodically fluctuate in 

the long term. By Hurwitz criteria, the local stability of the positive equilibrium of this model is 

investigated. 

The conditions under which the positive equilibrium is locally asymptotically stable are obtained. Under 

the same conditions, namely, with the same parameters, the stability of the positive equilibrium of 

predator-prey model would change due to the introduction of gestation time delay for predator. Moreover, 

with the variation of time delay, the positive equilibrium of the model subjects to Hopf bifurcation. The 
above theoretical results are validated by numerical simulations with the help of dynamical software 

MATLAB. 

The paper is organized as follows: In Section 2, the model is built. Section 3 is devoted to the investigation 
of the conditions for local stability. In Section 4, linearization of the delayed model is treated and the 

conditions for the Andronov-Hopf bifurcation are established (these are the main results of this paper). We 

show that the increase of delay destabilizes the system and causes the occurrence of periodic oscillations. 
We consider an example to illustrate what can be expected. Our concluding remarks are presented in 

section 5. 
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2  Mathematical model 

In this Section, we propose a system consists of two teams of preys with densities )(1 tN  and )(2 tN , 

respectively, interact with one team of predator with density )(tP . The assumptions of this model are as 

follow: 

(1) In the absence of any predation, each team of preys grows logistically; this is )1( 111 NNr   and 

)1( 222 NNr  . 

(2) The effect of the predation is to reduce the prey growth rate by a term proportional to the prey and 

predator populations; this is the ),( 1PN  )( 2PN  terms. 

(3) The teams of preys help each other against the predator, that the term )( 21 PNN is exist. 

(4) In the absence of any prey for sustenance, the predator's death rate results in inverse decay, that is the 

term  2P . 

(5) The prey's contribution to the predator growth rate is .)( 1 PN , )( 2PN ; that is proportional to the 

available prey as well as the size of the predator population. 

Based on the above discussion, Elettreby (see [4]) have studied the following prey predator model: 

(1)                                     
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Time delay is not occurred in the above model. In this paper, our aim is to investigate how the time 

delay effects the dynamics of system (1). From the above assumptions with time delay )0(  which is 

the time required for the gestation of predator, the model equations become: 
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where the coefficients  ,1r ,2r ,  and   are positive constants and ),0(1N ),0(2N 0)0( P . It is 

clear that the term PNN 21 in the pray equations means that the preys help each other e.g. in foraging and 

in early warning against predation. Note that this help occurs only in the presence of predator, this is 

presented by the term PNN 21  in the preys equations. 

3  The model without time delay 

In this Section, we will study the system (1) without delay. In particular, we will focus on the existence 
of equilibria and their local stability. This information will be crucial in the next section where we study 

the effect of the delay parameters on the stability of the steady states. 

The equilibria of the system (1) are: 
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and the following two interior solutions which means all teams coexist, 
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under the existence conditions, 
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A standard stability analysis based on the Jacobian matrix; 
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for the equilibria, we show that: the origin )0,0,0(:0 E is unstable equilibrium point, which has two 

positive eigenvalues, 12 , rr . Similarly, )0,0,1(:1 E has two positive eigenvalues, 2, r  . So, it is 

unstable equilibrium point. By the same way, )0,1,0(:2 E  has two positive eigenvalues, 1, r  . So, 

it is unstable equilibrium point. Also, the equilibrium point )0,1,1(:3 E has one positive eigenvalue, 

.   So, all of them are unstable equilibrium points. The equilibrium solution 
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The first internal equilibrium solution 
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rr . The second internal equilibrium solution: 
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To investigate the stability of the positive steady states ),,(:* **

2

*

1 PNNE  we consider the linearized 

system of (1) at 
*E . The Jacobian matrix at 

*E  is given by: 
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The characteristic equation of the linearized system is given by: 
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 (5) 

Then according to the Routh-Hurwitz criteria all roots of )(3 P have negative real parts if: 

,0,0,0 01202  ccccc       (6) 

hence, the positive equilibrium point 
*E  is linearly asymptotically stable under the following conditions: 

.1,, 11221   rrrrr       (7) 

 

4- The model with time delay 

In this Section, we focus on investigate the stability of equilibria and Hopf bifurcation of the positive 

equilibrium of the system (2). To study the stability of the steady states ),,(: **

2
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Then, we express system (8) in matrix form as follows: 
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where 1M and 2M  are 33  matrices given by: 
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The characteristic equation of the system (9) is given by: 
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It is known that the equilibrium ),,(: **

2

*

1

* PNNE  is asymptotically stable if all roots of 

corresponding characteristic Eq. (10) have negative real parts. We consider Eq. (10) with 0  that is Eq. 

(4) and assume that all the roots of Eq. (4) have negative real parts. This is equivalent to the assumption 

(7). Denote )0(),()(  wwi  , the eigenvalues of the characteristic Eq. (10), where )(  and 

)(w  depend on the delay .  Since the equilibrium ),,(: **

2

*

1

* PNNE  of the ODE model is stable, it 

follows that 0)( t  when .0  By continuity, if 0 is sufficiently small we still have 0)(   and 
*E  is still stable. If )0( 0  for certain value 0  (so that )( 0 wi ) is a purely imaginary root of Eq. 

(10), then the steady state 
*E  loses its stability and eventually becomes unstable when )(  becomes 

positive. In other words, if such an )( 0w does not exist, that is, if the characteristic Eq. (10) does not have 

purely imaginary roots for all delay, then the equilibrium 
*E  is always stable. We shall show that this 

indeed is true for the characteristic Eq. (10). Clearly, )0(),(  wwi  is a root of Eq. (10) if and only 

if: 

.)( 233 twiecwbiwawBiwAwi  .    (12) 

Separating the real and imaginary parts, we have: 
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Adding up the squares of both the equations, we obtain: 

   
222222222 )()()( cwawbwBwwA                        (14) 

i.e. 

.0)2()2( 22224226  cwcabBwaBAw                        (15) 
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The critical value of delay crit  for which the positive equilibrium point ),,( **
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Theorem 4.0.1 Assume that 
2
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,0 QQQ  and 03 Q , then Hopf bifurcation occurs provided 

either 31

462 QQww   is positive or negative. 

Proof: Our assumption gives two positive roots of the function )(zh . We consider the sign of the 

following transversality condition: 
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If 31

462 QQww   is either positive or negative, then the transversality condition holds and hence Hopf 

bifurcation occurs at crit  . This will be clear from the following numerical example. 

4.1 Numerical simulation 
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Figure: Left figures: The case of delay crit = 2: The solutions 21 , NN and P  shows convergence to the 

equilibrium solution *E  as time increases. Right figures: The case of delay crit = 2.5: The solution 

21 , NN and P   at the equilibrium point *E  loses its stability and subcritical Hopf bifurcation occurs, 

that is a family of periodic solution bifurcates from equilibrium *E  as time increases (Figure produced by 
applying MATLAB). 

 

Example: Let .0.2,0.1,0.1,4.1,2.1 21  rr  For the set of parameter values, the 

unique positive stable equilibrium is given by )29.1,45.0,40.0(* E . Substituting these parameter values 

in Eq. (16), we obtain: 

(19)                  .095655.51471.564481.1:)( 23  zzzzh    

Solving Eq. (19), we get one positive value of z, that is z = 0.1822644829; one positive value of  

w , 640.42692444w . There exist a critical value of delay, ,
2

 + 453264850:2 =
w

n
crit


  such that the 

positive equilibrium 
*E bifurcates to periodic solutions when   lies 

near .… 31.872990, 17.163127; 2.453265; =crit   

We treat the two cases of delay, near to  crit  with the same initial values are taken such that 

2)0(,4.0)0(,2.0)0( 21  PNN . In the former case, depicted as in the Figures, if the delay is 

slightly shorter than the critical one 02.45326485 =crit , the solution coverage to the equilibrium 

solution ).,,(:* *

2

*

1 PNNE   In the latter case, if the delay is slightly longer than the critical delay, we 

observer Hopf bifurcation which oscillate, as shown in the Figures. 
 

5 Conclusions 

Many animals live in group. Different groups share one habitat hence these groups may cooperate, 

compete with each other or form predator-prey system. In this work we present a new model for predator- 

prey model with delay. Equilibrium solutions are derived, their local stability are studied. A biological 
realization of our model is two cooperating teams of gazelles and zebras attacked by one predator. For the 

full general model with delay, conditions are derived under which there can be no change in stability. 

Using the discrete time delay as a bifurcation parameter it is found that Hopf bifurcation occurs when the 
delay passes through a critical value. Results are verified by computer simulation. 
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